Benchmarking Deep Learning Models for Wind Speed Downscaling

Motivation

Data

- > Efficient wind turbine placement requires information about local wind speeds.
- > However, the spatial resolution of climate projections is typically too coarse.
- > We present a **comprehensive benchmark** of state-of-the-art deep learning-based models for statistical downscaling of weather data.

Wind velocity (100m) ERA5 reanalysis data at 0.25° spatial & hourly temporal resolution:

We downscale patches of size 8×8 (LR) to size 32×32 (HR) over Germany.

Super-resolution (SR) Methods

The benchmark ranges from interpolation baselines to various prominent SR models:

	Method	Model Name	Parameters	Inference Time*
Image SR	CNN-based	EDSR [1]	1,516,418	65 s
Image SR	Attention-based	RCAN [2]	15,587,602	674 s
Video SR	Spatio-temporal	multi-frame ESPCN [3]	5,6826	12 s
Image SR	Diffusion Model	single-frame DDIM [4]	113,618,242	23210 s
Video SR	Diffusion Model	multi-frame DDIM**	113,624,002	26206 s
Interpolation	Bicubic			

* Inference time for the computation of one year of downscaled data.

** The multi-frame model versions use three consecutive LR patches to downscale each middle patch.

Luca Schmidt^{1,2}

¹Cluster of Excellence Machine Learning, University of Tübingen, Germany

Results: Downscaled Wind Speed Fields.

Results: Differences in spatial variability.

We evaluate the spatial variability using the Radially Averaged Power Spectral Density (RAPSD):

(a) RAPSDs of the wind speed fields as an average over the test set. (b) The absolute error of the log-transformed spectra w.r.t. the ground truth is shown to highlight the differences.

Nicole Ludwig¹

²Tübingen Al Center, Germany

- > Fairly 'easy' task to downscale wind speed by factor 4:

Model	PSNR	SSIM	MAE
EDSR	43.6974	0.9773	0.0054
RCAN	43.9422	0.9778	0.0053
ESPCN	41.0820	0.9583	0.0084
DDIM sf, e	44.4727	0.9814	0.0048
DDIM sf, s	43.9046	0.9790	0.0053
DDIM mf, e	45.2625	0.9844	0.0045
DDIM mf, s	44.8372	0.9828	0.0047
nterpolation	32.3057	0.8900	0.0178

on a single sample and when averaged over ensemble members.

- > Evaluating probabilistic models by CRPS of several ensemble members.

[1] Bee Lim, Sanghyun Son, Heewon Kim, Seungjun Nah, and Kyoung Mu Lee. Enhanced deep residual networks for single image super-resolution. In Proceedings of the IEEE conference on computer vision and pattern recognition workshops, pp. 136–144, 2017. [2] Yulun Zhang, Kunpeng Li, Kai Li, Lichen Wang, Bineng Zhong, and Yun Fu. Image super- resolution using very deep residual channel attention networks. In Proceedings of the European conference on computer vision (ECCV), pp. 286-301, 2018. [3] Jose Caballero, Christian Ledig, Andrew Aitken, Alejandro Acosta, Johannes Totz, Zehan Wang, and Wenzhe Shi. Real-time video super-resolution with spatio-temporal networks and motion compensation. In Proceedings of the IEEE conference on computer vision and pattern recogni- tion, pp. 4778–4787, 2017.

[4] Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. arXiv preprint arXiv:2010.02502, 2020.

Contact & Acknowledgments

Preliminary Findings

> Multi-input & multi-output prediction using u & v velocity components improves accuracy compared to single-input & single-output prediction using wind speed.

> The Diffusion models outperform all other models across all metrics, both when evaluated

Future Research

> Extending models to more 'complex' downscaling task: ERA5 (0.25°) \rightarrow COSMO REA6 (0.05°)

> Evaluating on downstream task to quantify the models impact for wind power assessment.

References

nachine learning new perspectives

luca.schmidt@uni-tuebingen.de