Fault Detection in Solar Thermal Systems using

Probabilistic Reconstructions

Florian Ebmeier¹, Nicole Ludwig¹, Jannik Thuemmel¹, Georg Martius¹, Volker H. Franz¹

¹Department of Computer Science, University of Tübingen, Germany

Motivation

- Solar Thermal Systems provide renewable heat with excellent efficiency.
- Fault detection and monitoring by experts is prohibitively costly for domestic systems.

Approach

- Transfer learning
- Unsupervised training
- Uncertainty estimation
- LSTM-based Variational Autoencoder [1].

Data

- Created dataset with Ritter Energie
- 72 total systems with 38 294 days of operational data.
- Input: Sensor data, Control signals, Status data.
- Train model on nominal systems.
- Reconstruct only temperature time series.
- Reconstruct full days

Model

Fault Detection

- Ensemble for uncertainty estimation.
- Sample multiple times to generate ensemble.
- Probabilistic Loss: Beta-NLL [2]

- Use probabilistic loss as anomaly score.
- Aggregate loss over features and time.
- Compare to rules-based fault detection in system.
- Annotations might be several days after anomaly was present in the system.

Reconstructions

System Analysis

System in normal operation Collector Outlet 100 [့] Anomaly Score 03:00 06:00 09:00 15:00 21:00

Annotations made by controller

Nominal System Fault Detected No Fault detected Anomaly Indication 1.0 $\begin{smallmatrix} 2023 - 11 - 19 \\ 2023 - 12 - 27 \\ 2023 - 12 - 2023 - 12 - 2023 - 12 - 23 \\ 2023 - 12 - 2023 - 12 - 29 \\ 2023 - 12 - 29 \\ 2024 - 01 - 06 \\ 2024 - 01 - 14 \\$

Summary / Discussion

- Correct reconstructions for nominal behavior.
- Critical faults clearly detected.
- Anomaly score based on probabilistic reconstruction is informative about the state of the system.
- Some faults are hard to detect by aggregated losses.

References

[1] Park, D., Hoshi, Y., & Kemp, C. C. (2018). A multimodal anomaly detector for robot-assisted feeding using an Istm-based variational autoencoder. IEEE Robotics and Automation Letters, 3(3), 1544-1551. [2] Seitzer, M., Tavakoli, A., Antic, D., & Martius, G. (2022). On the pitfalls of heteroscedastic uncertainty estimation with probabilistic neural networks. arXiv preprint arXiv:2203.09168.

Acknowledgements

This project was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany's Excellence Strategy – EXC number 2064/1 – Project number 390727645. The authors thank the International Max Planck Research School for Intelligent Systems (IMPRS-IS) for supporting Florian Ebmeier.

